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Abstract
The distinguished representations associated with the rows of the Freudenthal
magic square have a uniform tensor product graph with edges labelled by linear
functions of the dimension of the corresponding division algebra.

PACS number: 02.20.−a

1. Introduction

The idea of a series of Lie algebras goes back to the origins of the representation theory of the
classical groups. For example, the Lie algebras SL(n) are regarded as a series in the sense that
the irreducible representations can be parametrized so that tensor product decompositions and
plethysms can be written uniformly and dimensions of representations are written as rational
functions of n.

The suggestion that is the motivation for this work is that the Lie algebras in each row of
the Freudenthal magic square should also form a series in this sense. This idea was explored
explicitly and systematically in [Cvi84, Cvi77]. These works are currently unobtainable but
this work can be found in [Cvi]. Unfortunately this work seems to have gone unnoticed.
Independently of this, the exceptional series of Lie groups was studied in [Del96, DdM96,
CdM96]. In these papers the exceptional series are regarded as a finite series of simple Lie
algebras which include all five of the exceptional simple Lie algebras. The parameter for this
series can be taken to be the dual Coxeter number. The main results are several formulae for
dimensions of representations written as rational functions in the dual Coxeter number. These
dimension formulae were found by computer calculations.

The next development was the paper [LM01]. This paper and [LM02] contain detailed
information on each row regarded as a series and are background references for our discussion
on each row. The parameter here is the dimension, m, of the corresponding algebra and this
is the parameter we will be using in this paper. The main result is to give infinitely many
dimension formulae, for all rows except the first. These dimension formulae are deduced from
the Weyl dimension formula and do not require any computer calculations.
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These series are all one dimensional in the sense that there is a single parameter. The
preprint [Vog99] includes, in the same spirit as for the exceptional series, evidence for a two-
dimensional series of simple Lie algebras. Although this work was motivated by a problem
on Vassiliev invariants of links and has not been published, it has been influential and may
have inspired [Del96]. This plane contains the exceptional series as a line and we discuss the
exceptional series in this context.

The motivation for this paper is the proposal that each of these series of Lie algebras can
be regarded as a series of quantum groups. The initial evidence for this proposal is that the
dimension formulae in [LM01] are deduced from the Weyl dimension formula and so this
also gives quantum dimension formulae. These are rational functions of two indeterminates
q and qm.

The starting point for this work is the observation that the values of the quadratic Casimir
on the composition factors of V ⊗ V can be written as linear combinations of m. The
eigenvalues of the universal R-matrix (without spectral parameter) of the quantum group
acting on V ⊗V are powers of q whose exponents are simple linear combinations of the values
of the Casimir. This constructs representations of the braid groups over the field of rational
functions in two indeterminates, q and qm. It is now natural to ask if we can introduce the
spectral parameter. This is the question we study in this paper.

The results of this paper support the proposal that these series can be regarded as series of
quantum groups. In all cases except the first row of the Freudenthal magic square the spectral
parameter can be introduced. In these cases the Yang–Baxter equation is a powerful tool
for working with the centralizer algebras of the tensor powers of the distinguished
representation V .

In this paper we look at each row of the Freudenthal magic square from the point of view
of the R-matrix with spectral parameter. We distinguish two versions of the Yang–Baxter
equation. A trigonometric solution is associated with a finite-dimensional representation of a
quantum affine algebra and is written as

R1(u)R2(uv)R1(v) = R2(v)R1(uv)R2(u)

and a rational solution is associated with a finite-dimensional representation of a Yangian and
is written as

R1(x)R2(x + y)R1(y) = R2(y)R1(x + y)R2(x).

Each trigonometric solution gives a rational solution by putting u = qx and then taking the
limit q → 1.

The main method of construction of R-matrices is given by the tensor product graph,
see [ZGB91, DGZ94, OW86]. Let V and W be representations of a simple Lie algebra
which admit an action of the affine Lie algebra which extends the action of the Lie algebra.
This condition implies that there exists an R-matrix for the tensor product. Assume further
that the decomposition of the tensor product is multiplicity free. This condition implies
that the R-matrix is determined by its eigenvalues. Then the tensor product graph gives a
method for determining the eigenvalues. There is a bipartite graph constructed as follows.
Each composition factor of V ⊗ W is given a parity. In the case V = W this corresponds
to the decomposition of V ⊗ V into the symmetric square S2(V ) and the exterior square
�2(V ). These are the vertices of the graph. Then two vertices U1 and U2 of opposite parity
are connected by an edge if U2 is a composition factor of g ⊗ U1 (where g is the adjoint
representation). Then the vertices are labelled by the values of the quadratic Casimir, and each
directed edge is labelled by the difference of Casimirs.

If the R-matrix exists then the labels on the edges of the graph satisfy a consistency
condition for each cycle in the graph. There is no known example of a pair of representations
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which gives a consistent tensor product graph when there is no R-matrix. There is no
explanation of this observation either.

The Freudenthal magic square (from [Fre64]) is a 4×4 square of semi-simple Lie algebras.
The rows and columns are labelled by the four real normed division algebras; the real numbers
R, the complex numbers C, the quaternions H and the octonions O. For an introduction to
the octonions and the exceptional Lie algebras, see [Bae02]. The corresponding entry in the
square is a Lie algebra constructed in a uniform way from the ordered pair of algebras. This
is discussed in [Vin94, BS02, LM01]. In this paper we extend this square to a rectangle by
adding three more columns.

Here is the extended magic square. In this square, each column has a uniform construction
given an algebra. For the column labelled m = −2/3 the construction is to take the derivation
algebra. For the column labelled m = 0 the construction is to take the triality algebra.
Taking the columns labelled m = 1, 2, 4, 8 and the rows labelled R, C, H, O gives the original
Freudenthal magic square. The column labelled m = 6 is work in progress but will be
discussed below.

−2/3 0 1 2 4 6 8

R 0 0 A1 A2 C3 C3.H14 F4

C 0 T2 A2 2A2 A5 A5.H20 E6

H A1 3A1 C3 A5 D6 D6.H32 E7

S A1.H4 (3A1).H8 C3.H14 A5.H20 D6.H32 D6.H32.H44 E7.H56

O G2 D4 F4 E6 E7 E7.H56 E8

The convention here is that a Lie algebra G.H2n means that the Lie algebra of type G has
a representation V of dimension 2n which admits an invariant symplectic form ω. Then G
acts on the Heisenberg algebra of (V , ω) and G.H2n denotes the semi-direct product. These
algebras are not reductive and the Heisenberg algebra is the radical.

These non-reductive Lie algebras are explained by the sextonion algebra. This is a
six-dimensional alternative algebra intermediate between the split quaternions and the split
octonions. It does not admit a compact form. It has a degenerate norm; the kernel of the norm
is the radical of the algebra. This ideal is two dimensional and the quotient is the quaternion
algebra. In this paper we do not discuss the sextonion algebra in any detail. However, we
have mentioned this because it does predict new trigonometric solutions of the Yang–Baxter
equation. The vector spaces for these two solutions have dimensions 21 and 44. This also
predicts two new rational solutions of the Yang–Baxter equation. The vector spaces for
these solutions have dimensions 100 and 190. These examples involve non-reductive groups.
However, there is a precedent for introducing non-reductive groups namely the odd symplectic
groups of [GZ84]. The rational solutions of the Yang–Baxter equation can be constructed in
all these cases from the representation theory of these non-reductive Lie algebras. However
the trigonometric solutions are conjectural as the quantum groups associated with these non-
reductive Lie algebras have not been constructed.

The main result of this paper is to show that each row of this square (except the first) has
a uniform tensor product graph. This means that we can construct a tensor product graph with
edges labelled by linear functions in m. Then evaluating these linear functions by taking m to
be the dimension of the algebra gives the tensor product graphs in each row. This has been
extended in [Mac02] who shows that the K-matrices which satisfy the reflection equation and
are associated with symmetric spaces also have tensor product graphs which are uniform in
the same way.
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Next we discuss conventions which will be in force throughout the paper. All of these
conventions have precedents in the literature.

For the two rows corresponding to C and H we will give linear functions of m for the
dimension of the representation. For some values of m this may give a negative integer. In
these cases the representation is to be understood as a super vector space with zero even part.
In practice, the effect of this is to make some dimensions negative and also to interchange the
roles of the symmetric and alternating powers of the representation. The best known precedent
for this is that the symplectic groups Sp(2n) can be regarded as SO(−2n) by considering
them as the automorphism groups of an odd vector space with an invariant symmetric inner
product. This principle is also discussed in [Cvi81].

Another convention which was introduced in [Del96] is that although we will use the
notation of highest weight vectors for representations, the representations we will be working
with are in fact representations of the automorphism group of the Lie algebra of the Dynkin
diagram. This automorphism group is the semi-direct product of the semi-simple group of
adjoint type associated with the diagram with the finite group of diagram automorphisms. The
exception to this is that in the row associated with C there is a diagram automorphism which
interchanges the highest weight of the distinguished representation and its dual. In this case
we work with a subgroup of index two in the automorphism group so that we still have an
involution.

Finally we explain some notation.

Notation 1.1. If V and W are representations with highest weights λ and µ then we will
write VW for the representation with highest weight λ + µ and V p for the representation with
highest weight pλ.

We write highest weights in terms of the basis of fundamental weights and the ordering
of the nodes of the Dynkin diagram is the one used by Bourbaki.

2. Tensor product graphs

In this section we discuss the tensor product graphs of the rows of the magic rectangle. We
have chosen to treat these in the following sequence: C, H, O, R. The reason for choosing this
unusual sequence is that the first two cases, C and H, have uniform tensor product graphs with
edges labelled by linear functions of the dimension of the corresponding division algebra. For
the other two cases this does not work. However, for the O case there is a uniform R-matrix
for g ⊕ 1, but this is not constructed from a tensor product graph. The remaining case, R, is
possibly the most interesting as there is no known uniform R-matrix.

2.1. Complex numbers

The Lie algebras are

m −2 −2/3 0 1 2 4 6 8
G A2 0 T2 A2 A2 ⊕ A2 A5 A5.H20 E6

There is a distinguished representation V of dimension (3m + 3).
The common structure to these representations is

�2(V ) = V2 S2(V ) = V ∗ ⊕ V 2
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where the representation V 2 is given by notation 1.1. The highest weight vectors of these
representations are given in the following table:

A2 A2 2A2 A5 E6

V −[1, 0] [2, 0] [0, 1|1, 0] [0, 1, 0, 0, 0] [1, 0, 0, 0, 0, 0]
g [1, 1] [1, 1] [1, 1|0, 0] [1, 0, 0, 0, 1] [0, 1, 0, 0, 0, 0]
V2 −[2, 0] [2, 1] [1, 0|2, 0] [1, 0, 1, 0, 0] [0, 0, 1, 0, 0, 0]

The Lie algebra A5.H20 is graded and the representations we are considering can be taken
to be graded A5 representations. These are given in the following table:

0 1 2

g λ1 + λ5 λ3 1
V λ2 λ5

V ∗ λ4 λ1

V 2 2λ2 (λ2 + λ5) λ5

V2 (λ1 + λ3) (λ2 + λ5) ⊕ λ1 λ4

The quantum dimensions are given by

dimq(V ) = [3m/2][m + 1]

[m/2]

dimq(V
2) = [m + 2][m + 1][3m/2 + 1][3m/2]

[2][m/2 + 1][m/2]

dimq(V2) = [m + 1][m − 2][3m/2][3m/2 + 1]

[2][m/2][m/2 − 1]

dimq(g) = [m − 2][m][m + 1][3m/2 + 1]

[m/2 − 1][m/2][m/2 + 2]
.

In particular, dim(g) and dim(V ) are integers if and only if 3m + 12 divides 360. This
gives a finite list of possible values of m.

The values of the Casimir are

V p 4p2/3 + 2pm

V2V
p 4p2/3 + 2p(3m + 5)/3 + 4(3m + 1)/3

V ∗V p 4p2/3 + 2p(3m + 2)/3 + 2(3m + 2)/3
gV p 4p2/3 + 2p(m + 1) + 3m

The tensor product graph for V ⊗ V p is

V p+1 2p+2−→ V2V
p−1 2m+2p−2−→ V ∗V p−1

where the representations V p are given by notation 1.1.
The tensor product graph for V ∗ ⊗ V p is

V ∗V p m+2p+2−→ gV p−1 3m+2p−2−→ V p−1.

These tensor product graphs for m = 8 are given in [DGZ94]. The R-matrix for E6 is given in
[CK91, ZGB91, Ser91].
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2.2. Quaternions

The standard Lie algebras are

m −2/3 0 1 2 4 6 8
G A1 3A1 C3 A5 D6 D6.H32 E7

This list can be extended as follows:

m −3 −8/3 −5/2 −2 −4/3 −1
G D5 B3 G2 2A1 0 D(2, 1, α)

where D(2, 1, α) is an exceptional simple super Lie algebra. This series was first studied in
[Cvi81].

There is a distinguished representation V of dimension (6m + 8). The structure that these
representations have in common is that

�2(V ) = 1 ⊕ V2 S2(V ) = g ⊕ V 2

where V 2 is given by notation 1.1. The highest weight vectors of these representations are
given in the following table:

A1 3A1 C3 A5 D6 E7

V [3] [1, 1, 1] [0, 0, 1] [0, 0, 1, 0, 0] [0, 0, 0, 0, 0, 1] [0, 0, 0, 0, 0, 0, 1]
V2 [4] [2, 2, 0] [0, 2, 0] [0, 1, 0, 1, 0] [0, 0, 0, 1, 0, 0] [0, 0, 0, 0, 0, 1, 0]

The Lie algebra D6.H32 is graded and the representations we are considering can be taken
to be graded D6 representations. These are given in the following table:

0 1 2

g λ2 λ5 1
V λ6 λ1

V 2 2λ6 (λ1 + λ6) 2λ1

V2 λ4 (λ1 + λ6) λ2

The representations V in the extension are given by

D5 B3 G2 2A1

V −[0, 0, 0, 0, 1] −[0, 0, 1] −[1, 0] −[1] ⊗ [1]

The quantum dimensions of these representations are given by

dimq(g) = [2m + 3][3m/2 + 2][3m/2]

[m/2][m/2 + 2]

dimq(V ) = [m + 2][3m/2 + 2][2m + 2]

[m/2 + 1][m + 1]
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dimq(V
2) = [m + 3][3m/2 + 2][3m/2 + 3][2m + 2][2m + 3]

[2][m/2 + 1][m/2 + 2][m + 1]

dimq(V2) = [2m + 3][2m + 2][3m/2][3m/2 + 3]

[2][m/2][m/2 + 1]
.

In particular, dim(V ) and dim(g) are both integers if and only if (6m + 24) divides 720.
This gives a finite list of possibilities. If the projection �2(V ) → 1 is a symplectic form then
dim(V ) must be an even integer and this then restricts attention to those values of m such that
(3m + 12) divides 360.

The tensor product graph for V ⊗ V p is the following:

V p−1 2m+p+1−→ gV p−1 m+p+1−→ V2V
p−1 p+1−→ V p+1

where the representations V p are given by notation 1.1.
The R-matrix for E7 is given in [KKM91, JM95, CK91, ZGB91, Ser91]. The R-matrix

for G2 is given in [Kun90, Ma90].
The values of the Casimir are

V p 3p2/4 + p(3m + 3)/2
gV p 3p2/4 + p(3m + 5)/2 + 2m + 2
V2V

p 3p2/4 + p(3m + 7) + 3m + 4

The representations in the extension have the common property that

�2(V ) = g ⊕ V2 S2(V ) = 1 ⊕ V 2.

The interpretation that justifies including them in this series is to regard V as a super vector
space with zero even part. This has the effect of making the dimension—dim(V ) and
interchanges the symmetric and exterior powers. This gives the same tensor product graph
(except for G2 and p > 1) but not the labels on the edges.

2.3. Octonions

The exceptional series of Lie algebras are

m −5/2 −3/2 −4/3 −1 −2/3 0 1 2 4 6 8
G 1 OSP(2, 1) A1 A2 G2 D4 F4 E6 E7 E7.H56 E8

where OSP(2, 1) is a simple super Lie algebra of dimension (3, 2). This is a simple super Lie
algebra whose finite-dimensional representations are all completely reducible.

The Lie algebras in this list are the exceptional series of Lie algebras discussed in
[DdM96, CdM96, Del96]. However, this series has no distinguished representation, other
than the adjoint representation. In [Vog99] evidence is given for a family of Lie algebras
depending on three homogeneous parameters. This family includes all the simple Lie algebras
and includes the series of exceptional series as a straight line. In this section we will discuss
the adjoint representation from the point of view of R-matrices. Our conclusion is that the
results of [CP91] fit in nicely with this point of view.

The structure common to the adjoint representation is that

�2(g) = g ⊕ X S2(g) = 1 ⊕ Y (α) ⊕ Y (β) ⊕ Y (γ ).
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Here the projection �2(g) → g is the Lie bracket and the projection S2(g) → 1 is the Killing
form. This structure is given in [Mey84].

The weights of these representations for the classical groups are given by the following
table. For the corresponding weights for the exceptional groups see [CdM96].

G g X Y(α) Y (β) Y (γ )

SL(n) λ1 + λn λ2 + 2λn 2λ1 + 2λ2 λ1 + λn λ2 + λn−1

SO(n) λ2 λ1 + λ3 2λ2 λ4 2λ2

Sp(2n) 2λ1 2λ1 + λ2 2λ2 4λ1 λ2

In this situation we do not have an obvious parameter, m. Instead, we take the values of
the Casimir on Y (α), Y (β) and Y (γ ) as homogeneous parameters (α, β, γ ). In this paper, we
assume that these are non-zero.

Note that there is an action of the permutation group S3. This group acts by applying a
permutation to the coordinates (α, β, γ ) and to the representations (Y (α), Y (β), Y (γ )). The
preprint [Vog99] takes the quotient by this action.

The quantum dimensions are given by

dimq(g) = [α + 2β + 2γ ][2α + β + 2γ ][2α + 2β + γ ]

[α][β][γ ]

(1)

dimq(X) = [α + β + 2γ ][α + 2β + γ ][2α + β + γ ]

[2α][2β][2γ ]

× [α + 2β + 2γ ][2α + β + 2γ ][2α + 2β + γ ]

[α][β][γ ]

[2α + 2β][2α + 2γ ][2β + 2γ ]

[α + β][α + γ ][β + γ ]

(2)

dimq(Y (α)) = − [2α + 2β + 2γ ][2α + 2β + γ ][2α + β + 2γ ]

[2α][α][β][γ ]

× [α + β + 2γ ][α + 2β + γ ][α − 2β − 2γ ]

[α − β][α − γ ]
.

Although the exceptional series does not have a preferred representation (other than the
adjoint representation) it is distinguished by the fact that

S2(g) = 1 ⊕ Y ⊕ g2

or by the property that there is no quartic Casimir.
This plane has a number of lines:

α β γ

SL(n) −2 2 n α + β = 0
SO(n) −2 4 n − 2 2α + β = 0
Sp(2n) −2 4 −2n − 2 2α + β = 0
O −2 m + 4 2m + 4 2α + 2β − γ = 0
H −2 m m + 4 2α − β + γ = 0

Note that here Sp(2n) can be regarded as SO(−2n). There is one difference which is that g2

is Y (α) for SO(n) and is Y (β) for Sp(n).
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The Lie algebra SL(2) is a degenerate case and satisfies �2(g) = g and S2(g) = 1 ⊕ g2.
This does not determine the values of the three parameters and in fact all points on the line
α + β + 2γ = 0 give the Lie algebra SL(2).

Another line, which we do not discuss in this paper, is the line α + β + γ = 0 which gives
the series of super Lie algebras D(2, 1, α).

The odd symplectic Lie algebra Sp(2n+1) = Sp(2n).H2n is graded and the representations
we are considering can be taken to be graded Sp(2n) representations. These are given in the
following table:

0 1 2 3 4

g 2λ1 λ1 1
X (2λ1 + λ2) (λ1 + λ2) ⊕ 3λ1 λ2 ⊕ 2λ1 λ1

Y(α) 2λ2 (λ1 + λ2) 2λ1 λ − 1 1
Y(β) 4λ1 3λ1

Y(γ ) λ2 λ1

The dimensions of these representations of Sp(n) are

dim(g) = n(n + 1)/2

dim(X) = (n − 2)n(n + 1)(n + 3)/8

dim(Y (α)) = (n − 2)(n − 1)n(n + 3)/12

dim(Y (β)) = n(n + 1)(n + 2)(n + 3)/24

dim(Y (γ )) = (n − 2)(n + 1)/2.

The Lie algebra E7.H56 is graded and the representations we are considering can be taken
to be graded E7 representations. These are given in the following table:

0 1 2 3 4 dim

g λ1 λ7 1 190
X λ3 (λ1 + λ7) ⊕ λ2 λ1 ⊕ λ6 λ7 17 765
g2 2λ1 (λ1 + λ7) λ1 ⊕ 2λ7 λ7 1 15 504
Y λ6 λ2 ⊕ λ7 λ1 2 640

The Lie algebra D6.H32 is graded and the representations we are considering can be taken
to be graded D6 representations. These are given in the following table:

0 1 2 3 4 dim

g λ2 λ5 1 99
X (λ1 + λ3) (λ2 + λ5) ⊕ (λ1 + λ6) λ2 ⊕ λ4 λ5 4752
Y(α) 2λ2 (λ1 + λ5) λ2 ⊕ 2λ5 λ5 1 3927
Y(β) λ4 λ5 ⊕ (λ1 + λ6) λ2 945
Y(γ ) 2λ1 77

In addition to these lines there is an isolated point with parameters (−1, 4, 7) (and its
permutations). This Lie algebra has dimension 156. The candidate for this Lie algebra is a
centralizer of a unipotent element of E8 (see [Car93]). This is a graded Lie algebra where the
dimensions of the non-zero components are given by
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0 1 2

78 64 + 13 1

The Levi subalgebra is the degree zero subalgebra and is B6.
The tensor product graph is not consistent and so this does not give an R-matrix. However,

in [CP91] it is shown that there is a rational R-matrix for g ⊕ 1. This R-matrix is given by

R(x) = PX ⊕
(

α + x

α − x

)
PY(α) ⊕

(
β + x

β − x

)
PY(β) ⊕

(
γ + x

γ − x

)
PY(γ ) ⊕ Pg ⊕ P1.

Introduce the notation

a = α + β + γ b = αβγ h(x) = (x − α)(x − β)(x − γ ).

Then the matrices Pg and P1 are given by

Pg = 1

h(x)


−h(x) + 2b −2x 0

2abx −h(−x) + 2b 0
0 0 h(x)




and the matrix P1 is given by

P1 = 1

h(x)

(−h(x) + 2b bx/(x − a)

4ax(x + a) (h(−x) + 2b)(x + a)/(x − a)

)
.

Although the R-matrices have not been worked out, it is also shown in [CP91] that for the
exceptional series there are the following uniform minimal affinisations:

Va(Y ) = Y ⊕ g ⊕ 1

Va(X) = X ⊕ Y ∗ ⊕ 2g ⊕ 1.

These are obtained by a fusion argument. This argument generalizes to give the uniform
affinisations

Va(Y (α)) = Y (α) ⊕ g ⊕ 1

Va(X) = X ⊕ Y (α) ⊕ 2g ⊕ 1

and similarly with α replaced by β and γ .

2.4. Real numbers

The first row of the Freudenthal magic square gives the following Lie algebras:

m −2/3 0 1 2 4 6 8
G 0 0 A1 A2 C3 C3.H14 F4

These Lie algebras can be constructed uniformly in terms of a division algebra A by
taking the derivation algebra of the exceptional Jordan algebra H3(A). There is a distinguished
representation V of dimension (3m + 2). This representation can be constructed as the space
of trace-free, anti-Hermitian 3 × 3 matrices with entries in A.

The structure that these representations have in common is that

�2(V ) = g ⊕ V2 S2(V ) = C ⊕ V ⊕ V 2

where the representation V 2 is given by notation 1.1. In particular, these representations have
invariant symmetric bilinear and trilinear forms. They also have an invariant symmetric form
of degree four.
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The highest weights of these representations are given in the following table:

A1 A2 C3 F4

V [4] [1, 1] [0, 1, 0] [0, 0, 0, 1]
g [2] [1, 1] [2, 0, 0] [1, 0, 0, 0]
V2 [6] [3, 0] [1, 0, 1] [0, 0, 1, 0]

The Lie algebra C3.H14 is graded and the representations we are considering can be taken
to be graded C3 representations. These are given in the following table:

0 1 2

g 2λ1 λ3 1
V λ2 λ1

V 2 2λ2 (λ1 + λ2) λ3

V2 λ1 + λ3 λ1 ⊕ (λ1 + λ2) λ2

The quantum dimensions are given by

dimq(V ) = [m/4 + 1]

[m/2 + 2]

[5m/2 − 2]

[5m/4 − 1]

[m]

[m/2]
[3m/2 + 1]

dimq(g) = [m/4 + 1]

[m/2 + 2]

[m/4 + 2]

[m/2 + 4]

[m/4 − 1]

[m/2 − 2]

[5m/2]

[5m/4]

× [3m/2 − 2]

[3m/4 − 1]

[3m/2 − 6]

[3m/4 − 3]

[3m/2]

[m/2]

[m][3m/2 + 1]

[m/2 + 2]

dimq(V
2) = [m/4 + 2]

[m/2 + 4]

[m/4 + 1]

[m/2 + 2]

[5m/2 − 2]

[5m/4 − 1]

[5m/2]

[5m/4]

× [3m/2]

[m/2]

[3m/2 + 3]

[m/2 + 1]

[m][m + 1]

[2]

dimq(V2) = [5m/2 − 2]

[5m/4 − 1]

[5m/2]

[5m/4]

[m/4]

[m/2]

[m/4 + 1]

[m/2 + 2]

× [m − 2]

[m/2 − 1]

[3m/2 − 2]

[3m/4 − 1]

[m + 1][3m/2 + 1][3m/4 + 1]

[2][m/2 + 2]
.

In particular, dim(V ) and dim(g) are both integers if and only if 3m + 12 divides 360.
This gives a finite list of possible values of m. Some of these can be eliminated using other
dimension formulae.

The values of the Casimir are

1 g V 2 V2 V

0 5m − 4 6m + 4 6m 3m
.

The tensor product graphs are given by

F4 : 1
36−→ g

−12−→ V 2 24−→ V2
4−→ V
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This R-matrix is given in [KKM91, Ma91, Ser91, DGZ94].

C3 :

V
12
↗

−4
↘

1
16−→ g V2

−4
↘

12
↗

V 2

.

This R-matrix is given in [Mac92].

A1 : 1
1−→ g

9−→ V
−4−→ V2

−3−→ V 2.

This leads us to consider the tensor product graph

V
−2m+4
↗

3m

↘
1

5m−4−→ g V2
m+8
↘

−4
↗

V 2

.

However, this tensor product graph is consistent if and only if m = 4 or m = −4/3. The
conclusion is that although we have a tensor product graph this is not consistent and so does
not give an R-matrix. It may be that these representations have affinisations which give a
uniform R-matrix.
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[DdM96] Deligne P and de Man R 1996 La série exceptionnelle de groupes de Lie. II C. R. Acad. Sci. Paris Sér. I
Math. 323 577–82
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